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Abstract This paper proposes a way to combine the Mesh Adaptive Direct Search (MADS)
algorithm, which extends the Generalized Pattern Search (GPS) algorithm, with the Variable
Neighborhood Search (VNS) metaheuristic, for nonsmooth constrained optimization. The
resulting algorithm retains the convergence properties of MADS, and allows the far reaching
exploration features of VNS to move away from local solutions. The paper also proposes
a generic way to use surrogate functions in the VNS search. Numerical results illustrate
advantages and limitations of this method.

Keywords Nonsmooth optimization ·Mesh Adaptive Direct Search · Generalized Pattern
Search · Variable Neighborhood Search

1 Introduction

The paper considers optimization problems of the form

min
x∈�⊆Rn

f (x) (1)

where f : Rn → R ∪ {∞}, � = {
x ∈ X : c j (x) ≤ 0, j = 1, 2, . . . , m

}
and X ⊆ R

n repre-
sents closed constraints, i.e. constraints that necessarily need to be satisfied in order for the
functions to evaluate. The closed constraints often include bounds constraints L ≤ x ≤ U
with L and U in (R ∪ {±∞})n , and possibly boolean constraints that indicate if they are
satisfied or not, and in the latter case, there is no quantification by which they are violated.
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The functions c j : Rn → R for j = 1, 2, . . . , m represent the other constraints and are
referred to as the open constraints.

The objective function f and the different functions defining the set � are typically pro-
vided as black-boxes in the sense that the way to obtain a function value from a given x ∈ R

n

is not provided in an analytical way, or may be time consuming or expensive to evaluate. The
black-boxes may also fail to return a value at some points. This is modeled by setting the
function value to infinity and is called the barrier approach. The case where none of their
eventual property, derivatives for example, can be exploited is considered. Such black-box
functions are widely used in different engineering disciplines [1,3,10,12,13,23,28,31,35].
Black-box functions are typically evaluated by running computer code. Approximations of
the black-box functions can also be made through easier to evaluate surrogate functions (see
[14]), and this paper proposes a different way to exploit such surrogates.

Different derivative-free direct search methods are designed for problem (1), such as GPS
[14,45], MADS [2,9] and DIRECT [21,30]. The reader may consult [32,33] for surveys of
direct search methods. Under appropriate conditions, these methods ensure convergence to
a point satisfying necessary optimality conditions based on the Clarke calculus [18].

In the present paper, we exploit the flexibility of the MADS algorithm so that it includes
the far reaching searches of the Variable Neighborhood Search (VNS [25,36]). The funda-
mental structures of MADS and VNS are complementary: on the one hand, in case of failure
to identify improved points, VNS explores increasingly larger regions, and on the other hand,
MADS explores smaller and smaller neighborhoods. The purpose of this paper is to present a
generic coupling of MADS and VNS that may be applied to the class of problems for which
MADS was designed.

The main reason why we chose to combine VNS with the MADS algorithm instead of
another optimization method is that the convergence analysis of the resulting method follows
directly. Each MADS iteration is partitioned into a “search” and a “poll” step. The search
step is intended to be flexible (but still must satisfy some minimal requirements), and the
poll step must follow strict rules. The MADS algorithm was conceived in such a modular
way precisely to allow the user to create and use his own search strategies. In the present
paper work we take advantage of the flexibility of the search step by proposing a generic
VNS search step. The way in which VNS generates trial points makes it easy to verify that
the search requirements are satisfied. The MADS poll step and the update rules are the same
as in [9], thus the MADS convergence analysis holds.

The paper is divided as follows. Section 2 proposes an overview of the MADS and VNS
methods. Section 3 presents a generic algorithm that couples MADS and VNS and allows
the use of surrogate functions. Section 4 describes a practical implementation. Finally some
numerical results, including the detailed description of an engineering problem, are presented
in Sect. 5. The proposed algorithm is compared to the classic MADS algorithm and to MADS
with a classic search strategy.

2 Descriptions of the MADS and VNS algorithms

2.1 MADS

The MADS algorithm [9] for problem (1) extends the Generalized Pattern Search (GPS)
algorithm for linearly constrained optimization [14,45]. Both GPS and MADS are iterative
algorithms where the black-box functions are evaluated at some trial points, which are either
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accepted as new iterates or rejected. At any iteration (denoted by the integer k), all trial points
generated by these algorithms are constructed to lie on the mesh

M(k,�k) =
⋃

x∈Vk

{
x +�k Dz : z ∈ N

nD
} ⊂ R

n

where Vk is the set of points evaluated by the start of iteration k, �k ∈ R
+ is the mesh size

parameter, and D a fixed matrix whose columns are in R
n . In most cases, D is chosen to be the

n×2n matrix [−I I ]where I is the n×n identity matrix. We make the standard assumption
that all the trial points are in a compact set C . This assumption, together with the fact that the
mesh is constructed using integer combinations of �k D ensures that C ∩M(k,�k) contains
a finite number of points.

In order to simplify the notations of the present paper, the parameter �k is the equivalent
of �m

k in [9].
Each iteration is divided into two main steps, the search and the poll, followed by an

update step that determines the success of the iteration. The new mesh size, the new current
iterate and the stopping criteria are updated or verified at the end of the iteration.

The closed constraints defining the set X are handled by the barrier approach, as in MADS,
consisting in rejecting trial points outside X . For the other constraints (c j , j = 1, 2, . . . , m),
a filter approach is used [8,22]: if the points are in X , they are stored and classified, using
their objective function value and a measure of the constraints violation, which permits to
accept the promising points and to reject the others.

The poll evaluates the functions f and c j ’s at mesh points near the current iterate xk . The
convergence analysis of [9] relies on the rigid rules that the poll step need to follow. The
poll step remains unchanged in the present paper. The way of choosing the directions used to
generate the poll points makes the difference between GPS and MADS: in GPS, the normal-
ized set of poll directions is finite, whereas it may be asymptotically dense in the unit sphere
with MADS, allowing a better exploration of the space of variables. At iteration k, the set
containing the trial poll points is called the frame Pk , given by Pk = {xk +�kd : d ∈ Dk},
with Dk the set of directions used to construct Pk . Dk is a set formed by taking positive
integer combinations of the columns of D. We will not say more about the poll.

The search step is very flexible and allows the algorithm the opportunity to generate trial
points anywhere on the mesh: the way of generating these points is free of any rules, as long
as they remain on the current mesh M(k,�k) and that the search terminates in finite time.
This partition of an iteration into a search and a poll steps is the key feature of MADS which
is exploited in the present paper

Some search strategies are tailored for a specific application: for example if the problem
is to optimize a wing shape, then some known wings models or configurations may be used.
Other search strategies are generic, as the use of Latin Hypercube sampling [42,43]. Further-
more, different types of searches may be combined. This paper introduces a generic search
inspired by the VNS metaheuristic.

A high level description of the algorithm is summarized in Fig. 1. The MADS parameters
taken for the tests of Sect. 5 are the default parameters used in our NOMAD software [5]. The
values of critical parameters (such as the initial mesh size parameter �0) will be given in that
section. We encourage the reader to consult [9] for a complete description of the algorithm.

A hierarchical convergence analysis is available for MADS, based on the black-boxes
differentiability: the main convergence result is that under local Lipschitz assumptions, the
algorithm produces a Clarke stationary point, i.e. a point x̂ ∈ � at which the generalized
Clarke derivative of f is non negative for all the directions in the Clarke tangent cone at x̂

123



302 J Glob Optim (2008) 41:299–318

Fig. 1 MADS algorithm
[0] Initializations

x0 ∈ X, ∆0 ∈ R
+

k ← 0

[1] Poll and search steps
Search step

evaluate the functions on a finite number
of points of M(k, ∆k)

Poll step
compute p MADS directions Dk ∈ R

n×p

construct the frame Pk ⊆ M(k, ∆k)
with xk, Dk, and ∆k

evaluate the functions on the p points of Pk

[2] Updates
determine the type of success of iteration k
solution update (xk+1)
mesh update (∆k+1)
k ← k + 1
check the stopping conditions, goto [1]

(see [18]). A corollary of this result is that without constraints and if f is strictly differentiable,
then ∇ f (x̂) = 0.

2.2 VNS

The VNS is a metaheuristic proposed by Hansen and Mladenović [25,36], and has been
proved efficient on a large range of problems. More often than not, it is applied to combi-
natorial problems [17,24,26,27], but it is possible to use it with continuous variables as in
[4,16,20] and in the present work.

Two fundamental elements are required to define a VNS method: a descent method and a
neighborhood structure. The descent is a method executing moves with respect to the neigh-
borhood structure, which defines all the different possible trial points reachable from the
current solution. The objective of these moves is to improve the current solution, and are
repeated until no improvement is possible. The last point of the descent is a local optimum
with respect to the neighborhood structure used.

Local searches often terminate in the vicinity of a nearby local optimum. VNS uses a
random perturbation method to attempt to move away from a local optimal solution, far
enough so that a new descent from the perturbed point leads to an improved local optimum,
localized in a new and hopefully deeper valley. The perturbation method relies on the neigh-
borhood structure, and is parametrized by a non negative scalar ξk , the VNS amplitude at
iteration k, which gives the order of the perturbation (it is not necessary small, as the term
“perturbation” might suggests, and “shaking” will be used for the routine executing it). The
implementation details of the perturbation method has to be defined specifically for each type
of problems, as long as the idea of amplitude is defined and dependent of ξk . For example ξk

could be a minimal desired distance between the two points before and after the perturbation,
or the number of random elementary moves leading to the perturbed point. The most effi-
cient perturbation methods are often linked to the problem properties. In the present paper,
a generic perturbation method is described.

A description of the VNS metaheuristic is given in Fig. 2. The algorithm essentially con-
sists of two loops. Each iteration of the inner loop is decomposed into two steps: first the
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Fig. 2 VNS metaheuristic for
minimizing f : Rn → R [0] Initializations

itmax, ξmax, ξ0, δ ∈ N
+

x0 ∈ X
k ← 0, it ← 0

[1] while (it ≤ itmax)
ξk ← ξ0

while (ξk ≤ ξmax)
x ← shaking(xk, ξk)
x ← descent(x )
if f(x ) < f(xk)

xk+1 ← x
ξk+1 ← ξ0

else
xk+1 ← xk

ξk+1 ← ξk + δ
k ← k + 1

it ← it + 1

current solution (typically a local optimum) is perturbed with an amplitude factor ξk , and then
a descent is performed from the perturbed point. If a better solution is obtained, it becomes
the new iterate, and the amplitude is reset to its initial value. Otherwise the amplitude is
increased by a value δ > 0 (called the VNS increment) so that the next perturbation will
lead to a point more distant than the previous one. Finally, the inner loop terminates after a
maximum amplitude ξmax is reached.

The outer loop consists in repeating this process i tmax times. The i tmax parameter of the
first level loop is crucial for the efficiency of most VNS implementations. However, in our
context, this loop will implicitly be made by the MADS algorithm, and therefore we fix
i tmax = 1.

3 Coupling the MADS and VNS algorithms

The VNS algorithm and the MADS poll step have a complementary behavior: when no
success has been made during an iteration, the next poll step generates trial points closer
to the poll center, while the VNS explores a more distant region with a larger perturbation
amplitude. This paper proposes to incorporate the VNS method in the MADS algorithm, as a
search step (called the VNS search). The poll step remains unchanged so that the convergence
analysis of MADS still holds.

3.1 General description

The MADS mesh provides a natural neighborhood structure to be used by the two VNS
components (descent and perturbation) and only the update of the perturbation amplitude ξk

has to be made outside of the VNS search step.
The entire convergence analysis of MADS is preserved when the two following conditions

are met: first, at iteration k, all the VNS search trial points must lie on the mesh M(k,�k),
and second, their number must be finite. The general way to define the perturbation and the
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descent is now given, and in the next section, a practical implementation will be described
and proved to be a valid search, by satisfying those two conditions.

Adding a VNS exploration in the search step of a MADS algorithm can be done by intro-
ducing only two new parameters. One parameter is �V > 0 and relates to the VNS shaking
method, as described in the next paragraph. The other parameter is ρ > 0 and defines a
stopping criteria for the descent. It is introduced at the end of this subsection.

The shaking at iteration k generates a point x ′ belonging to the current mesh M(k,�k). The
amplitude of the perturbation is relative to a coarser mesh, whose coarseness is independent
of �k . To do so, we introduce the VNS mesh size parameter

�V > 0 and VNS mesh M(k,�V ). (2)

This parameter is constant and independent of the iteration number k. The reason why the
VNS perturbation needs to be independent of the current mesh M(k,�k) is that it should
not be influenced by the specific MADS behavior (which is in fact the contrary of the VNS
behavior, as said in the introduction of this section). Only the fact that an iteration succeed, or
the number of successive failed iterations, can rule the VNS amplitude, as in the original VNS
algorithm. Another way of viewing that fact is that for a given value of ξk , the perturbation
has to be the same regardless of the mesh fineness or coarseness.

The shaking may be viewed as the function

shaking : (
M(k,�k), N

) → M(k,�V ) ⊆ M(k,�k)

(x, ξk) �→ x ′ = shaking(x, ξk)

where ξk ∈ N is the perturbation amplitude.
As it will be illustrated in the next section, the VNS mesh size parameter �V can also be

used as a criteria to decide if a VNS search should be performed at a given iteration.
The VNS descent is viewed as a function

descent : M(k,�V ) → M(k,�k)

x ′ �→ x ′′ = descent (x ′)

and has to generate a finite number of mesh points. While the shaking randomly changes a
point in hopes of moving away from a local optimum, the idea of the descent is to obtain
an improved point x ′′ from x ′ (in the filter sense of [8], i.e. in terms of objective value and
constraints violation). Ideally, a descent step must lead toward a local optimum. The descent
step in VNS is important because x ′, as a randomly perturbed point, has a weak probability
of being an interesting point.

In the MADS context, local optimality is defined with respect to the mesh. The descent
step ideally leads to a mesh local optimum, with respect to the current step size �k and the
directions used. The descent method described here is generic, but it is easy to see that a
specialized descent method could be used for each type of problem that could exploit some
inner properties. In order to reduce the number of functions evaluations, the descent step may
terminate as soon as it generates a trial point y close to another point x previously considered
by the algorithm, i.e. when ‖x − y‖∞ ≤ ρ,

where ρ > 0 is called the Descent Stop (DS) parameter. (3)

The idea of this Descent Stop criteria is to avoid exploring a region previously visited. We
believe that this strategy of terminating prematurely a descent could be exported to the gen-
eral VNS metaheuristic. Figure 3 gives a description of the algorithm. In the update step,
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Fig. 3 General algorithm of the
coupling of MADS and VNS [0] Initializations

x0 ∈ X, ∆0 ∈ R
+

ξ0 , ξmax, δ, ∆V

k ← 0

[1] Poll and search step
Search step (optional)

x ← shaking (xk, ξk) (perturb. of ampl. ξk

on M(k, ∆V ))
x ← descent (x ) (descent on M(k, ∆k))
Sk ← finite number of

points of M(k, ∆k) (possibly empty)
evaluate the functions on Sk ∪ {x }

Poll step
compute p MADS directions Dk ∈ R

n×p

construct the frame Pk ⊆ M(k, ∆k)
with xk, Dk, and ∆k

evaluate the functions on the p points of Pk

[2] Updates
update of VNS amplitude (ξk+1 ← ξ0 or ξk+1 ← ξk + δ)
updates of solution and mesh
k ← k + 1
check the stopping conditions, goto [1]

ξk+1 is set to ξ0 if no success has been made or if ξmax has been reached. This last point
allows to mimic the outer loop of the original VNS algorithm, the loop on i t in Fig. 2.

3.2 Use of a static surrogate

Surrogate functions may be used in several ways in the context of GPS algorithms (see [14]
for a generic framework using surrogates). They are useful when the functions defining the
problem are costly to evaluate, because they are less complicated and give an approximation
of the true functions. Surrogates do not need to be good approximations of the true functions:
in [10], the surrogate function differed from f by a factor of roughly 200, but both f and the
surrogate shared some similarities.

Two types of surrogates can be defined: static surrogates, tailored for a specific problem
(see [13] for example), and dynamic surrogates, constructed dynamically during the exe-
cution of the algorithm through previous evaluations and possibly with some interpolation
technique (kriging for example, see [34,39]).

In [10], three strategies are proposed for the use of surrogates with the MADS algorithm:
first an entire run of an optimization algorithm on the surrogate may lead to a good starting
point for another run with the true function. A surrogate may be used to order the poll and
search trial points. The more promising points are evaluated first, and if an improvement is
made, the others are not considered. Finally a surrogate may be used to determine if a search
point is valuable enough so that the true function is to be evaluated.

The use of surrogates in this paper can be seen as a fourth way to use them. The descent
step can be entirely performed on the surrogate function. The true function can then be eval-
uated only once, at the final point produced by the descent. This strategy reduces the cost
of a descent to a single expensive evaluation of the true function, and some less expensive
surrogate functions.
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4 Practical implementation

The algorithm presented in the previous section is generic and flexible. We now present
a specific implementation, using the LTMADS implementation of [9], by specifying some
parameter values and defining the perturbation and descent methods

shaking : (M(k,�k), N
)→ M(k,�V ) ⊆ M(k,�k)

and

descent : M(k,�k)→ M(k,�k).

For the perturbation x ′ ← shaking(xk, ξk), at iteration k, two conditions are imposed:
first, the point x ′ ∈ M(k,�V ) is chosen so that the distance in �∞ norm between xk and x ′ is
ξk�V . This distance is not based on the current mesh size �k because the perturbation ampli-
tude should only be linked to the value of ξk , as in the original VNS. This is the case as �V is a
parameter fixed by the user at the beginning of the algorithm. Second, in order to ensure that x ′
belongs to the current mesh M(k,�k), the shaking procedure is triggered at iteration k when
the VNS mesh size parameter is an integer multiple of the mesh size parameter �k , i.e., there
exists a non negative integer � such that �V = ��k . Under the LTMADS mesh size update
rule and the basic 2n directions D = [−I I ], this condition is met as soon as �k ≤ �V , and
x ′ necessarily belongs to M(k,�k) since M(k,�V ) = M(k, ��k) ⊆ M(k,�k). The choice
of the VNS mesh size parameter �V directly influences at which iterations a VNS search is
performed.

Figure 4 shows two examples of meshes of sizes �V and �k with possible choices for a
perturbation, with n = 2. The perturbation algorithm used in Sect. 5 is given in Fig. 5.

A final remark concerning the choices of the amplitudes ξ0 and ξmax and of the VNS
increment δ is that they are chosen so that a perturbation of order 20 from a point at its lower
bound generates a perturbed point on its upper bound. This value has been chosen as it is
empirically good for VNS codes.

Since the poll step is efficient in identifying mesh local optima, it is natural to use it for
the VNS descent step. However, the current mesh size cannot be reduced so that all the points
evaluated during the descent step belong to the current mesh. The VNS descent terminates

∆V = 2∆k, ξk∆V = 2∆k

shaking(xk , 1) ∈ {x1, . . . , ξ 8}

xk

x1

x2

x3 x4 x5

x6

x7x8

∆k

∆V

∆V = 4∆k, ξk∆V = 12∆k

shaking(xk, 3) ∈ {x1, . . . , ξ 24}

xk

x1

x2

x3

x4

x5

x6

x7 x8 x9 x10 x11 x12 x13

x14

x15

x16

x17

x18

x19x20x21x22x23x24

∆V

∆k

Fig. 4 Two examples of meshes M(k, �k ) (gray), M(k, �V ) (black) and possible perturbation choices (points
xi on the bold frame at distance ξk�V from xk )
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shaking (xk, ξk)
generate randomly w ∈ Z

n such that w ∞ = ξk

for each variable index i ∈ [1;n]
if lower bound Li is finite and xi

k + ∆V wi < Li

wi ← (Li − xi
k)/ ∆V

if upper bound U i is finite and xi
k + ∆V wi > U i

wi ← (U i − xi
k)/ ∆V

x ← xk + ∆V w

Fig. 5 Practical implementation for the perturbation method; Li ∈ R ∪ {−∞} and Ui ∈ R ∪ {+∞} respec-
tively refer to the lower and upper bounds of variable i , i ∈ [1; n]

when the poll fails on the current mesh size (this is similar to the extended poll of [6]). It
uses the MADS directions of the LTMADS implementation and its own mesh size parameter,
called the descent mesh size. The initial value of the descent mesh size is taken to be the
current mesh size.

The descent works on its own filter for the constraints management (the descent filter),
reseted each time a new descent is performed. Each descent may be opportunist (the eval-
uations are stopped at the first success) or complete (they are completed regardless of the
successes made). The mesh update is made as in LTMADS, for the dedicated descent mesh
size.

The LTMADS optimist strategy is also used: if, during a poll iteration of the descent, an
improvement point in the direction d is found, the next descent iteration will evaluate the
functions at a point further along the direction d .

With this practical implementation for the perturbation and descent methods, the follow-
ing pair of propositions ensures that the VNS search is valid as a search step of the MADS
algorithm.

Proposition 4.1 At iteration k, if the VNS search occurs, it generates trial points lying on
the current mesh M(k,�k).

Proof At iteration k, it has already been shown that the perturbed point x ′ lies on the current
mesh, since ∃� ∈ N

+ such that �V = ��k (condition for the VNS search to occur). By
applying the rules of the MADS poll for the descent, all the trial points will also belong to the
mesh. Even if surrogates are used for the descent, the unique final evaluation will be made
for a point on the mesh. ��
Proposition 4.2 At iteration k, if the VNS search occurs, it generates a finite number of trial
points.

Proof Proposition 4.1 ensures that all the VNS search trial points are on the current mesh.
Combining this with the assumption that all the trial points are in a compact set implies that
their number is finite (see Proposition 3.4 in [7] for a more detailed proof). ��

In practice, one may simply limit the number of different VNS trial points. For example,
in the numerical tests of Sect. 5, a limit of 60 trial points is imposed.

5 Numerical tests

This section describes numerical results for three different problems on which the algorithm
was tested. The first one is a bound constrained analytic two variables problem, the second
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is a multidisciplinary optimization problem with 10 variables and 10 constraints, and the last
one is an engineering problem from the chemical industry with eight variables and eleven
black-box constraints. Surrogate functions are used in the last two problems. All source codes
for these three problems are available on the web site www.gerad.ca/Charles.Audet.

5.1 Algorithm parameters and testing protocols

The MADS implementation used is the research version of the code NOMAD [5], with the
following parameters: the poll step uses the MADS 2n directions and is complete (i.e., black-
box functions are evaluated for all poll trial points). The MADS dynamic ordering of the
poll directions is performed after each successful iteration (see [9] for details). Scaling of
the variables is done in a way that the mesh size parameters �0,�min , and �V are always
presented as proportions of the variable ranges. For example, for a n = 2 problem with
L = [−1 0] and U = [1 10], an indicated value of �0 = 0.1 corresponds in fact to the scaled
vector �scl

0 = [0.2 1] (the same for �min and �V ). Scaling can also be done directly into the
black-box code.

The VNS mesh size parameter �V is rounded so that the condition �k = ��V is verified
when �k ≤ �V so that the user does not need to compute the exact value of �V compatible
with some �k). For example, without scaling, if the user chooses �V = 0.001 and �0 = 1,
�V will be rounded to 1/1024, the closest integer power of 4.

The filter [8,22] is used for open constraints with the squared �2 norm to define the con-
straint violation. The algorithm terminates when �k drops below a parameter �min or when
a limit on the number of true evaluations is reached (nmax

eval ). In the present work, we use
nmax

eval=10,000. These MADS parameters remains unchanged throughout the numerical tests,
as it is not the point here to analyze the MADS-alone behavior.

The Latin Hypercube (LH [42,43]) search strategy is also used with two parameters
ninit = 100 and niter = 10: ninit is the number of LH trial points generated at the first
iteration of MADS, and niter the number of LH trial points generated at each subsequent
iteration k ≥ 1. The initial LH step is complete while the other steps are opportunist (i.e.,
the iteration terminates immediately after a first success).

An upper limit of 60 trial points is imposed for every VNS search. For the descent step
of VNS, the evaluations are opportunist and the directions used are the standard MADS 2n
directions

{±ei : i = 1, 2, . . . , n
}

where ei is the i th column of the identity matrix. When the
premature descent stop technique (DS) is used, the parameter ρ of Eq. 3 is given. If available,
surrogates are used in the descent step of VNS as described in Sect. 3.2, and not in the other
MADS components.

Six algorithmic variants defined by different combinations of parameters are tested. The
different algorithms configurations are detailed in Fig. 6 and Table 1. For comparison pur-
poses, the two first algorithms do not use the new features proposed in this paper: algorithm
A uses only MADS without a search strategy and algorithm B combines MADS and Latin
Hypercube (LH) search. All other algorithms use MADS and VNS, and differ in their use
of LH search, surrogates (Sgte = “yes” or “no”) or DS strategy (ρ value or “no”). Latin
Hypercube (LH) search always uses parameters ninit = 100 and niter = 10.

Because MADS directions are randomly chosen and two runs with the same parameters
can give different results, 30 runs are made for each algorithm. Throughout the tests, algo-
rithms D, E, and F, which use VNS and one additional feature (DS, LH or surrogates) can
be mixed into other variants. These variants are denoted by D+E, D+F, and E+F (algorithm
D+E uses MADS, VNS, surrogates, and LH, the same logic applies to D+F and E+F).
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MADS+VNS

Fig. 6 Schematic description of the six main types of algorithms. Algorithms C, D, E, and F are variations
of the new algorithm proposed in this paper

Table 1 Detailed parameters description of the six main algorithms

Algorithm MADS LH VNS Sgte DS

A Yes No No No No
B Yes ninit = 100 No No No

niter = 10
C Yes No �V = 0.01 or 0.05 or 0.1 No No
D Yes No �V = 0.01 or 0.05 or 0.1 Yes No
E Yes ninit = 100 �V = 0.01 or 0.05 or 0.1 No No

niter = 10
F Yes No �V = 0.01 or 0.05 or 0.1 No ρ = 0.005 or

0.01 or 0.1

MADS parameters are default [5] parameters plus �0 = 0.001 or 0.05 and �min = 10−12 or 10−7

Results are summarized in Figs. 8, 9, and 11 and presented through 7 subgraphs. Each
subgraph represents the objective function value ( f ) versus the number of black-box eval-
uations (neval) for the 30 runs of each series. One black-box evaluation is counted for the
call of all the black-boxes defining the problem (objective and constraints). Note that when
no surrogate is used, neval denotes the number of true evaluations. With surrogates, another
statistic (specific for each problem) must be used, taking also into account the surrogate cost.
The last subgraph gives a summary of the six tests (one for each main algorithm) with average
values. This larger subgraph allows to compare directly the algorithms, in terms of quality
of the solution and evaluations cost. Results for variants D+E, D+F, and E+F are not shown
in the first 6 subgraphs but appear in the summary subgraph.

Finally, Tables 2, 4, and 7 present the numerical values of all the tests. Each row of these
tables is dedicated to one algorithm, the first columns give the parameters used, and the other
columns give average, best and worst values for f and neval over the 30 runs. The runs
above the horizontal line do not use the algorithmic features proposed in this document.

5.2 An analytic problem with many local optima

This problem is taken from [46, problem 4]. It has two variables and the function to mini-
mize is
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Table 2 Analytic problem: testing parameters and numerical results

Algorithm Parameters Average Objective ( f ) Neval

LH VNS DS Obj. ( f ) Neval Best Worst Best Worst
(�V ) (ρ)

A No No No −1.865 321 −3.063 0.453 266 436
B Yes No No −2.248 1,283 −3.307 −1.596 916 1,823
C No 0.01 No −3.009 5,182 −3.307 −2.575 3,399 9,016
E Yes 0.01 No −3.055 6,146 −3.307 −2.705 3,708 10,000
F No 0.01 0.01 −2.837 2,809 −3.307 −2.413 2,202 4,088
E+F Yes 0.01 0.01 −2.778 3,171 −3.307 −1.964 2,401 4,258

Fig. 7 Graph of the analytic problem function with bounds [−5; 5] and [−0.25; 0.25]

f (a, b) = esin 50a + sin(60eb)+ sin(70 sin a)+ sin
(
sin(80b)

)

− sin
(
10(a + b)

)+ 1

4
(a2 + b2).

The closed bounds constraints −5 ≤ a, b ≤ 5 are added since it can easily be shown that
f (a, b) ≥ f (0, 0) whenever (a, b) lies outside these bounds.

The graph of the objective function is shown in Fig. 7. One may observe the numerous
local optimal solutions. The plot on the top part of the figure shows the function on the entire
domain, and the one on the bottom zooms in on the rectangle − 1

4 ≤ a, b ≤ 1
4 .

Since the function is analytic and not costly, no surrogate function is used. Our first set of
results used x0 = [0 0]T as starting point. Unfortunately, this starting point is very close to the
global optimal solution (x∗ � [−0.024 0.211]T with f � −3.307), and all runs converged
trivially to the global solution. Therefore, a new starting point far from the optimum was
chosen: x0 = [3 3]T , for an objective function value of f � 4.721. The initial mesh size
parameter �0 is set to be 0.05 times the variable ranges and �min to 10−12 times the ranges.
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Fig. 8 Analytic problem: graphs f (objective function value) versus neval (number of black-box evaluations)

Two different values for �V are used in the different runs: 0.01 and 0.05 times the variable
range.

Results are shown in Table 2 and Fig. 8. The MADS alone and MADS with LH (algo-
rithms A and B) performed well in terms of number of function evaluations, but did not often
terminate near the global optimum. The VNS algorithms C and E (VNS and VNS+LH) seem
very appropriate in terms of global quality of the 30 runs (best average values for f ). This
quality came at the cost of additional evaluations. Tests using the DS strategy have fewer
evaluations, but a lower quality of solution as well.

On a problem with a large number of local solutions, it is not surprising to see that the
VNS search strategy is useful, since VNS is a metaheuristic designed to move away from
local solutions.

We have also observed that the larger value reached by the ξk parameter is almost always
below 10, for an allowed maximum of ξmax = 20. It means that the outer loop on i t in
the original VNS algorithm (Fig. 2), which is implicitly made in the update step of the new
algorithm (Fig. 3), is not useful for this problem. This remark holds also for the other two
problems.

5.3 A MDO problem: aircraft range optimization

This problem is a Multidisciplinary Design Optimization (MDO) problem taken from [37,41]
from the mechanical engineering literature. Three coupled disciplines (structure, aerodynam-
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Table 3 MDO problem: starting
point (x0), best known point (x∗),
and bounds (L , U ∈ R

n )

x0 x∗ L U

0.25 0.40 0.10 0.40
1 0.75 0.75 1.25
1 0.75 0.75 1.25
0.5 0.156244 0.1 1.0
0.05 0.06 0.01 0.09
45,000 60,000 30,000 60,000
1.6 1.4 1.4 1.8
5.5 2.5 2.5 8.5
55 70 40 70
1,000 1,500 500 1,500

f −535.82 −3964.20
(infeasible)

ics, and propulsion) are used to represent a simplified aircraft model, with 10 variables. The
objective function is to maximize the aircraft range under bounds constraints and 10 open
constraints. The black-box performs an iterative fixed points method through the different
disciplines in order to compute the aircraft range. A natural surrogate consists in using a
greater relative error as stopping criteria, and a smaller limit on the maximal number of
fixed points iterations. The total number of fixed points iterations (from surrogates or true
functions evaluations) is used instead of the number of black-boxes evaluations in the results
( f pi t).

The starting point x0, the best known point x∗ and the bounds are given in Table 3.
The parameters �0, �min , and �V are taken respectively to 0.001, 10−7, and 0.1 times
the variables ranges. Note that this problem can be solved more efficiently by other MDO-
specialized optimization methods, as in [41], but the purpose of the results shown here is
to make a comparison between the basic MADS algorithm and the coupling of MADS and
VNS.

Results on Fig. 9 and Table 4 show the same trend as the ones of the analytic problem:
the use of the VNS improves the global quality of the solutions, at the cost of additional
evaluations. Here, the runs that stand out as the best ones are for algorithms D and D+F
(VNS with surrogates). The use of the DS strategy and surrogates in algorithm D+F gave
excellent results by lowering the number of evaluations for almost the same quality in terms
of objective function value. For this problem the LH search seems not very appropriate, even
when combined with the VNS search.

5.4 An engineering problem: styrene process optimization

The problem to optimize is a styrene production process simulation. Optimization of chemical
processes simulation using an outside optimizer has previously been studied in [11,15,29].
Styrene production process is divided into four steps: reactants preparation (pressure rise
and evaporation), catalytic reactions (as in [40]), styrene recovery (first distillation), and
benzene recovery (second distillation). There is also an important recycling of unreacted
ethylbenzene. All these steps appear in Fig. 10.

A chemical process simulator was developed based on the Sequential Modular Simulation
(SMS) paradigm. SMS is a widely used approach [19,38,44], mostly because it lies on fast
iterative methods. For some given operating parameters, each block can compute its output
only when its input has been calculated. The main deficiency is recycling loops: the first
blocks of the loop require the evaluation of the lasts ones.
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Fig. 9 MDO problem: graphs f (objective function value) versus f pi t (number of fixed points iterations)

Table 4 MDO problem: testing parameters and numerical results

Algorithm Parameters Average Objective ( f ) f pi t

LH VNS DS Sgte Obj. ( f ) f pi t Best Worst Best Worst
(�V ) (ρ)

A No No No No −3101.39 54,253 −3964.20 −1588.35 27,273 94,815
B Yes No No No −3443.09 94,881 −3964.20 −1355.66 18,328 201,797
C No 0.1 No No −3954.30 91,963 −3964.20 −3685.85 51,513 152,713
D No 0.1 No Yes −3964.16 38,193 −3964.20 −3964.03 18,339 125,261
E Yes 0.1 No No −3962.66 113,342 −3964.20 −3937.25 56,589 165,063
F No 0.1 0.25 No −3952.61 108,393 −3964.20 −3640.72 55,429 175,015
D+E Yes 0.1 No Yes −3961.38 65,586 −3964.20 −3881.93 26,220 148,164
D+F No 0.1 0.1 Yes −3950.60 30,200 −3964.20 −3657.49 9,984 69,839

The simulator black-box uses some common methods such as Runge-Kutta, Newton,
Wegstein (fixed points), secant, bisection, and many other chemical engineering related
solvers. The objective is to maximize the Net Present Value (NPV) of the styrene production
process project, while satisfying industrial and environmental regulations. This is given by

N PV =
n∑

i=0

(Si − Ci )(1− Ta)− Ii + Di

(1+ Tr )i
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Fig. 10 Flowsheet of the styrene production process

Table 5 Styrene problem: variables and objective description, starting point (x0), best point found (x∗), and
bounds (L , U ∈ R

n )

Description units x0 x∗ L U

Outlet temperature in block HEATER K 870 1,100 600 1,100
Length of reactor (block PFR) m 13.88 16.9836 2 20
Light key fraction in block SEP-STY – 0.086014 0.0968282 10−4 0.1
Light key fraction in block SEP-BZ – 0.008092 0.0001 10−4 0.1
Outlet pressure of block PUMP atm 7.22 2 2 20
Split fraction in block SPLITER – 0.2599 0.224742 0.01 0.5
Air excess fraction in block FIRE – 1.668 1.96261 0.1 5
Cooling temperature of block COOLER K 330 403.025 300 500
f = −N PV −$ −10942600 −33539100

Table 6 Styrene problem: constraints description, with partition into three groups

Group j Description of constraint c j

Simulator 1 True if the simulation has succeed
Process 2 True if column SEP-STY is structurally acceptable

3 True if column SEP-BZ is structurally acceptable
4 True if mixture in FIRE can burn and if environmental regulations on C O and N Ox are met
5 Minimal purity of produced styrene
6 Minimal purity of produced benzene
7 Minimal overall ethylbenzene conversion into styrene

Economics 8 Maximal payout time
9 Minimal discounted cashflow rate of return

10 Maximal total investment
11 Maximal annual equivalent cost

where the index i denotes a year between 0 and n, Si the sales, Ci the operating costs, Ta the
income tax rate, Ii the investment, Di is the depreciation, and Tr is the actualization rate. The
source of difficulty in that optimization problem is that Si , Ci , Ii , and Di are functions of
the simulator output. This output contains information such as equipment sizing, flow rates
and compositions, units efficiencies, power needs, and so on. The simulation of the process
must be successfully performed before the constraint and objective functions are evaluated.
Tables 5 and 6 give additional information on the problem characteristics.
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Fig. 11 Styrene problem: graphs f (objective function value) versus neval = true evaluations + surrogate
evaluations/3

The surrogate is obtained by using greater tolerance values and smaller maximum num-
bers of iterations in the various numerical methods. As opposed to the MDO problem of the
previous subsection, computational comparison between true and surrogate functions is not
trivial. Intensive tests suggest that one true evaluation has approximatively the same cpu-time
of three surrogate evaluations. For the results in Fig. 11 and Table 7, the “neval” value is
then an approximation of the evaluations cost, obtained by neval defined to be the sum of
number of true evaluations, with a third of the number of surrogate evaluations. Because of
this, neval exceeds in some cases the upper bound of 10,000. The scaling is this time done
directly into the black-box code with new unified bounds of [0 1]. The fixed parameters used
for these series of 30 tests are [�0 �min �V ]T = [0.001 10−7 0.05]T .

Figure 11 and Table 7 do not suggest a clear domination of one VNS strategy over all
others. However, one may observe that algorithms C and E using VNS are the more stable
runs in the sense that they very often produce a good solution with only a few outliers (this
is mostly apparent in the plots of Fig. 11). Runs using MADS and MADS with LH search
could not reach the best objective function values. VNS systematically generated the best
solutions.
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Table 7 Styrene problem: testing parameters and numerical results

Algorithm Parameters Average Objective ( f ) Neval

LH VNS DS Sgte Obj. ( f ) Neval Best Worst Best Worst
(�V ) (ρ)

A No No No No −28334450 2,036 −29189900 −26104800 722 7,159
B Yes No No No −29397777 4,612 −32650700 −24822000 1,236 10,000
C No 0.05 No No −31974893 4,919 −32932200 −28417900 1,503 10,000
D No 0.05 No Yes −30382607 2,811 −32783500 −28266000 775 11,193
E Yes 0.05 No No −32339227 6,145 −33539100 −28566200 2,410 10,000
F No 0.05 0.005 No −31278540 5,001 −33046500 −28765300 1,538 10,000
D+E Yes 0.05 No Yes −30302470 4,562 −32881500 −26903100 911 10,681
D+F No 0.05 0.005 Yes −30132383 2,703 −32793100 −26222400 783 11,280
E+F Yes 0.05 0.005 No −32304503 7,184 −33063200 −29173800 1,898 10,000

6 Discussion

This paper proposes a generic way to incorporate the VNS metaheuristic into the search
step of the MADS algorithm. Notice that a similar combination was recently detailed in [47]
where a generic particle swarm GPS search strategy is defined.

Our proposed algorithm belongs to the general MADS framework, and thus preserves
all of its convergence properties. The algorithm remains simple, with only two additional
parameters: the VNS mesh size parameter �V used in the shaking, and the optional descent
stopping parameter ρ. In the numerical results presented here we either used �V to be one
tenth, one twentieth or one hundredth of the range of the variables. In our software packages
we will use one tenth as the default value. We observed that the algorithm was more sensitive
to the descent parameter ρ, and will not adventure in suggesting default values.

The algorithm was applied to three problems and compared to classic MADS with or
without the classic Latin Hypercube (LH) search strategy. Good results were obtained in
terms of quality: the random aspect of the MADS directions is attenuated, leading to more
stable solutions. This improvement in terms of quality generally comes to the price of a
higher number of black-box evaluations, but VNS seems to use these additional evaluations
more efficiently, compared to other methods such as LH search.
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